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Abstract
Jordan–Wigner-type transformations connecting the spin-3/2 operators and
two types of fermion are derived. The general condition of fermionizability
of spins is obtained. Discordances in the results of a previous attempt to
generalize the Jordan–Wigner transformation for all spins (Batista and Ortiz
2001 Phys. Rev. Lett. 86 1082) are pointed out. After introducing clarity, a
new interpretation is given for these results.

PACS numbers: 03.65.Ca, 03.65.Fd, 05.50.+q, 75.10.Jm, 75.10.Pq

1. Introduction

Variable exchanges are very often used during the solution of different problems. Such
transformations are carried out in both classical and quantum mechanics. Sometimes they
essentially simplify the analysis of the problem under consideration.

In the quantum many-body theory there is a set of variable exchanges transforming a
spin system into a particle system. The most well known and widely used among these are
the Holstein–Primakoff transformation [1], the Schwinger boson representation [2] and the
Jordan–Wigner transformations [3] (see also [4, 5]). The first two of these map one spin on to a
bosonic system. However, due to the fact that the phase space of the spin is finite-dimensional
but the phase space of the bosonic system is infinite-dimensional, the next main difficulty
arises. It is necessary to take into account some local constraints fixing or restricting the
number of bosons in the particle system. This circumstance limits the use of these methods.

The Jordan–Wigner transformations are quite another matter. These establish a connection
between one-dimensional (1D) lattice spin-1/2 and spinless fermions on the same lattice; they
are invertible and do not require a constraint. In spite of their complicated form, they have led
to several exact results. The most famous applications of the Jordan–Wigner transformations
are the exact solution of the spin-1/2 XY -chain by Lieb et al [6] and the very effective free
fermion method developed by the same researchers to exactly calculate the thermodynamic
quantities of the two-dimensional (2D) Ising model [7]. Quite recently, these transformations
were generalized for 2D [8] and for D > 2 [9] spin-1/2 systems.

However, in nature, all spins up to 15/2 exist [10]. It is very interesting and important
to understand the behaviour of spins higher than 1/2 systems. In spite of the great progress
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achieved with the help of the above-mentioned spin–boson transformations and other methods,
many questions so far remain unanswered, for example, the problem of the Haldane gap [11].
It is extremely desirable to obtain more exact solutions, sometimes yielding unexpected results.
Thus, it would be very useful to obtain some new representations for operators of higher spins,
free of the shortcomings of bosonic representations. To obtain this aim, it is necessary to
use particles with finite-dimensional phase space, i.e. fermions. Is this possible for all higher
spins? What use can we derive from Jordan–Wigner-type transformations obtained in this
way? To answer these questions, first of all we must try to obtain such relations between
spins and fermions. Only after this, will these things become clear. Recently, an attempt
to generalize the Jordan–Wigner transformations was undertaken by Batista and Ortiz [12].
Unfortunately, their results contain serious discordances. Below we shall demonstrate this and,
after introducing clarity, we shall give another interpretation for their formulae. Then we shall
construct explicitly true Jordan–Wigner-type transformations between spin-3/2 and fermions
of two types. In conclusion, we shall formulate the general condition of fermionizability of
spins in the Jordan and Wigner manner.

2. Clarification of the results of Batista and Ortiz

We shall find discordances in the Batista and Ortiz results considering two examples: (1) for
integer spin; (2) for half integer spin.

To begin, we shall examine the transformations of Batista and Ortiz for spin-1. We use the
language of usual Fermi operators of creation and annihilation but not of Hubbard operators, as
in [12]. Also, we omit in this section the site indices and the string operators as non-essential
for our consideration. Then the Batista–Ortiz transformations can be written as

S+ =
√

2
(
(1 − n1)c

†
2 + (1 − n2)c1

)
(1)

S− =
√

2
(
(1 − n1)c2 + (1 − n2)c

†
1

)
. (2)

Here, S± = Sx ± iSy, Sx, Sy and Sz are the operators of spin components, and the next
commutative relations must be fulfilled

[S+, S−] = 2Sz [Sz, S±] = ±S± {S+, S−} = 2S(S + 1) − 2(Sz)2 (3)

where S is the value of the spin; in our case S = 1. c1,2 and c
†
1,2 are the annihilation and

creation operators for fermions of the first (labelled 1) and second (labelled 2) types with the
next anticommutative relations

{cα, cβ} = 0
{
c†α, c

†
β

} = 0
{
cα, c

†
β

} = δαβ (α, β = 1, 2) (4)

and nα = c†αcα .
From equations (1) and (2) it follows that

S+S− = 2(1 − n1) (5)

S−S+ = 2(1 − n2). (6)

Thus, from equation (3),

Sz = 1
2 [S+, S−] = n2 − n1 (7)

in agreement with [12], and

(Sz)2 = n1 + n2 − 2n1n2. (8)
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While equations (5) and (6) result in

{S+, S−} = 4 − 2n1 − 2n2 (9)

equations (3) and (8) lead us to

{S+, S−} = 4 − 2n1 − 2n2 + 4n1n2. (10)

The last addendum on the right-hand side of equation (10) is absent on the right-hand side
of equation (9); that is, equations (9) and (10) contradict each other. Thus, the Batista–Ortiz
transformations for an integer spin do not keep the spin operators algebra and hence are
unacceptable in the form suggested in [12].

Now we turn to Batista–Ortiz transformations for half-odd integer spins. We consider
the case of spin-3/2, for which in [12] it was offered to introduce three types of fermions.
According to Batista–Ortiz transformations

S+ =
√

3c
†
1(1 − n2)(1 − n3) + 2c

†
2c1(1 − n3) +

√
3c

†
3c2(1 − n1) (11)

and S− = (S+)†. Then

S+S− = 3n1(1 − n2)(1 − n3) + 4n2(1 − n1)(1 − n3) + 3n3(1 − n2)(1 − n1) (12)

S−S+ = 3(1 − n1)(1 − n2)(1 − n3) + 4n1(1 − n2)(1 − n3) + 3n2(1 − n1)(1 − n3). (13)

So

{S+, S−} = 3 + 4n1 + 4n2 − 11n1n2 − 7n2n3 − 7n1n3 + 14n1n2n3 (14)

but

(Sz)2 = 1
4 ([S+, S−])2 = 9

4 − 2n1 − 2n2 + 7
4n1n2 − 1

4n2n3 − 1
4n1n3 + 1

2n1n2n3 (15)

and we see that the third relation from equation (3) is not satisfied. Consequently, Batista–Ortiz
transformations for half-odd integer spins are also wrong.

The general conclusion is that the Batista–Ortiz transformations are erroneous as Jordan–
Wigner-type transformations. Also, their statement about the integrability of some spin-1
chains is not grounded.

However, transformations (1), (2) and (7) can be saved by adding to them the constraint

n1n2 = 0. (16)

With this constraint, they may be used for representation of spin-1 through fermions. This is
very important because no constraintless fermionic representations for integer spin exist (see
Conclusion). However, equations (1), (2) and (7) are not Jordan–Wigner-type constraintless
transformations.

Analogous remarks can be made for other formulae of Batista and Ortiz. But it is
necessary to adduce the next observation. The minimum quantity of fermions required for
fermionization (with constraint or not) of spin S is defined by the next rule. For fermionization
of spin S > 0 satisfying the inequality

2n−1 < 2S + 1 � 2n n ∈ N

n types of fermion are enough (this rule is the corollary of the fact that phase space of spin
S is (2S + 1)-dimensional and phase space of n types of fermion is 2n-dimensional; this will
become more clear after reading the whole of this letter). We see that this minimum quantity
of particles for spin S > 1 is considerably less than 2S used in [12]. Thus, we can construct
considerably more simple spin–fermion transformations for spin S > 1 using considerably
less particles than in [12]. Furthermore, for some spins (specification will be given in the
Conclusion) these transformations will be constraintless, i.e. of Jordan–Wigner type.

In the remaining part of this letter, we discuss only constraintless Jordan–Wigner-type
transformations.
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3. Fermionization of spin-3/2

In this section, we construct transformations between spin-3/2 operators and two types of
fermion. From the procedure which will be used it will be clear what spins can be represented
through fermions. First, we consider one-spin problem and after its solution generalize on a
lattice.

The basis of the spin state space consists of four vectors, |−3/2〉, |−1/2〉, |1/2〉 and |3/2〉,
which are the eigenvectors of the Sz operator. The phase space of two types of fermion is also
four-dimensional with the basis |0〉, |1〉 = c

†
1|0〉, |2〉 = c

†
2|0〉, |1&2〉 = c

†
2c

†
1|0〉. Now, we need

to establish a connection between spin operators and operators acting in fermionic space. Let
us write out all the necessary matrix representations of these operators:

S+ =




0
√

3 0 0
0 0 2 0
0 0 0

√
3

0 0 0 0


 Sz =




3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2


 (17)

and S− = (S+)† = (S+)T;

c1 =




0 0 0 0
0 0 0 0

−1 0 0 0
0 1 0 0


 c2 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 (18)

and c
†
1,2 = (c1,2)

† = (c1,2)
T. These matrices are simple enough and we can easily see that the

solution of the one-spin problem is{
S− = √

3c2 + 2c
†
2c1

S+ = √
3c

†
2 + 2c

†
1c2.

(19)

It is easy to check that all the relations (3) with S = 3
2 are satisfied by equation (19) with

Sz = 1
2 [S+, S−] = − 3

2 + 2n1 + n2. (20)

By the passage to a lattice we must introduce the commutativity of all spin operators
acting on different sites. Hence we must modify equation (19){

S−
i = √

3c2iUi + 2c
†
2ic1i

S+
i = √

3U
†
i c

†
2i + 2c

†
1ic2i

(21)

where, for a 1D lattice, Ui = exp
{
iπ

∑
j<i(n1j + n2j )

}
is the string operator. The form (20)

for Sz
i with site index is not changed.
The inverse transformations are obtained in the same way. For a lattice we have


c1i = − 1√

3
S−

i Sz
i S

−
i Wi c

†
1i = − 1√

3
W

†
i S

+
i Sz

i S
+
i

c2i = 1√
3

(
1
2 + Sz

i

)2
S−

i Wi c
†
2i = 1√

3
W

†
i S

+
i

(
1
2 + Sz

i

)2 (22)

where, for a 1D lattice, Wi = ∏
j<i Xj with

Xj = 5

4
− (

Sz
j

)2 = exp

{
i
π

2

(
1

4
− (

Sz
j

)2
)}

. (23)

All the relations (4) for one site are fulfilled and the operator Wi ensures anticommutativity of
c-operators acting on different sites. The form of Xj we can construct from the requirement

Xjcαj = −cαjXj . (24)
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Assuming that Xj has a form

Xj = 1 + ξSz
j + ζ

(
Sz

j

)2
+ η

(
Sz

j

)3

with parameters ξ , ζ and η being defined from equation (24), taking into account equation (20)
and introducing the normalization factor 5

4 , we obtain equation (23). Notice that Xj = X
†
j

and X2
j = 1.

The obtained transformations (20), (21) and (22) are sufficiently complicated and much
effort will be needed to derive some profit from them. Let us try to transform the isotropic
XY spin-3/2 chain in fermionic form using equation (21):

H = J
∑

i

(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) = 1

2
J

∑
i

(
S+

i S−
i+1 + S−

i S+
i+1

)

= 1

2
J

∑
i

(
3c

†
2i (1 − 2n1i )c2i+1 + 2

√
3Ui

(
c
†
1i+1c2i+1c2i − c

†
1ic2ic2i+1

)
+ 4c

†
2i+1c1i+1c

†
1ic2i + h.c.

)
. (25)

We do not see the free fermion Hamiltonian as it was for the spin-1/2 case [6]. Now
fermions interact, with the interaction being very complex due to operator Ui (string operator
in the 1D case).

Notice that we can obtain usual Jordan–Wigner transformations using the procedure
described in this section.

4. Conclusion

We have explicitly constructed direct (equations (20) and (21)) and inverse (equation (22))
Jordan–Wigner-type transformations between spin-3/2 and two types of fermion. These
transformations can be used to map spin-3/2 systems on to fermionic models with two types
of fermion, with spin up and with spin down, and vice versa, i.e. to map the fermionic model
on to the spin model.

The answer to the second question raised in the introduction is still unclear and, perhaps,
will appear after a time. However, concerning the first question, now we are ready to give the
answer prompted by the procedure applied above to fermionize the spin-3/2. Only operators
of spin S satisfying the equality

2S + 1 = 2n n ∈ N (26)

can be expressed in terms of fermions. The matrices of spin-S operators, which are the
infinitesimal matrices of irreducible representation of SU(2) group with the eigenvalue of the
Casimir operator S2 being equal S(S + 1), have only the size (2S + 1)× (2S + 1) and, of course,
cannot be presented through matrices of other sizes. The phase space of n types of fermion is
2n-dimensional. The representation of the algebra of fermionic operators in this space is also
irreducible. Hence, the condition (26) follows.

Spin 1 and the main part of other spins do not satisfy the condition (26). So, their
operators cannot be expressed in terms of fermions (without constraint). The next spin
suitable for fermionization is 7/2 with three types of fermion being necessary, then spin-15/2
follows with four types of fermion, etc. Of course, spin-1/2 satisfy the condition (26) with
n = 1 and usual Jordan–Wigner transformations exist [3].
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